
Stat 534: formulae referenced in lecture, week 3, updated:
model-based species comp. analysis and Tweedie distributions

mark recapture, part 1

Model-based species composition analysis:
The goal: Does the species composition (all species) change according to a model, e.g.:

two groups (1930’s, 1960’) or more: 1 way ANOVA
factorial treatment structures: 2+ way ANOVA
regression model, e.g., linear with year, or polynomial with year
but no mixed models (at least for now)

Putting the pieces together:

• Fit specified model to each species separately
Using likelihood and a specified distribution

• Fit reduced model without the term of interest (null hypothesis)
My understanding is this follows the usual R sequential testing approach
So for a model: species = A + B + C,
R will compare: Test of: Null (H0) model Full model

A intercept only intercept + A
B intercept + A intercept + A + B
C intercept + A + B intercept + A + B + C

• Collect the change in log likelihood for each comparison and each species

• Add change in lnL across the species
Has known (asymptotic) distribution when all species are independent

They’re almost certainly correlated

• Use randomization to get a valid test in spite of correlation
Randomize quantile residuals, one for each species and site
Keep together all residuals from a site (accounts for species correlation)

Does the total number of individuals matter?
Consider two sites, each with 3 species, Abundances: Site 1 2 3 Total

A 4 4 32 40
B 8 8 64 80

Proportion of total: Site 1 2 3 Total
A 0.1 0.1 0.8 1.0
B 0.1 0.1 0.8 1.0

Two situations

• Higher total because of more effort, known effort
Include log effort, Ei as an offset, this models µij/Ei

Yij ∼ F (µij)
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log µij = model + logEi

log µij − logEij = model

µij/Ei = exp(model)

• Better “catchability”, total not known
Include a site effect in the model

Yij ∼ F (µij)

log µij = αi + model

Estimate αi, will usually be very close to logTotal
But uncertainty in model estimates takes account of unknown total

Distributions for continuous data with non-constant variance

• Normal distribution: usually, constant variance for any mean

– Can write “power of the mean” models

– Yi ∼ N(µ, g(µ)), e.g., g(µ) = σ2µk

– Allow unequal variance, but distribution always symmetric around the mean

– Common experience is that distributions, e.g., of tree basal area, are skewed not
symmetric

• logNormal distribution: log Yi ∼ N(µl, σ
2
l )

– Skewed

– Var Yi = kµ2

– constant coefficient of variance: cv =
√

Var Y /µ =
√
k

– But: 0 can never occur
Zero-inflated distributions or Hurdle models (both allow zeros, both more com-

plicated)

• Gamma distribution:

– Very similar to a log-normal (also skewed)

– But very slightly fewer very large values (“skinnier upper tail”)

– Also doesn’t allow 0’s

• a Tweedie distribution

Tweedie distribution: more flexible than log normal

• Continuous random variable, Var = kµp, p is a parameter to be specified or estimated
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• probability density function not especially informative

• normal, Poisson, and Gamma distributions are special cases of the Tweedie

– p = 0 ⇒ normal

– p = 1 ⇒ Poisson

– p = 2 ⇒ Gamma

• Most interesting distributions are those with 1 < p < 2

– Skewed distribution for continuous data with additional point mass at 0

∗ log normal and Gamma distributions are only for Y > 0

∗ “additional point mass at 0”: a Tweedie distribution has a non-zero P[Y = 0]

– Tweedie is a compound Poisson-gamma distribution.

– For 1 < p < 2, here’s how to simulate a value, Y , from the Tweedie(λ, a, b)

∗ simulate N ∼ Poisson(λ)

∗ simulate N independent values of Yi ∼ Gamma(a, b)

∗ return Y =
∑N
i=1 Yi

∗ If you want values from a Tweedie with a specified µ, σ2, and p, use:

a =
2− p
p− 1

b = µ1−p

(p−1)σ2 λ =
µ2−p

(2− p)σ2

Mark-recapture analysis

• General population model:

Nt+∆t = Nt +Bt −Dt + It − Et

– Nt: number of individuals in the population at time t

– ∆t: time increment, often 1 year, can be other timespans

– Bt: # births between t and t+ ∆t

– Dt: # deaths between t and t+ ∆t

– It: # immigrants between t and t+ ∆t

– Et: # emigrants between t and t+ ∆t

• With a single population, commonly assume It = Et = 0

• And often interested in “how many?”: Nt

• Derived quantities that are often of interest:

– φt: fraction of Nt who survive the interval, Dt = (1− φt)Nt
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– per-capita birth rate, Bt/Nt

Horvitz-Thompson estimator

• Sample survey:

– Survey design ⇒ probability that individual i included in the sample = πi

T̂otal =
∑ Yi

πi

where the sum is over the individuals included in the sample

– Example: simple random sample of n individuals from a population of N

– πi = n/N

– Estimated population total =
∑ Yi

n/N
= N

∑ Yi
n

= NY

• Applied to estimating population size Nt:

– Known probability of capture for each individual, πi

– For now, assume same for all individual, πknown

– Yi = 1 for all individuals caught in the first sample

N̂1 =
∑ 1

πknown
=

n1

πknown

Lincoln-Petersen estimator N̂ =
n1n2

m2

• n1: number of individuals released with marks at time 1

• n2: number of individuals caught at time 2

• m2: number of individuals caught with marks at time 2

• Intuitive estimator:

– Assume π is same for 1st and 2nd times

– and same for marked and unmarked individuals

– At time 2:
Caught n2 individuals
marked individuals ⇒ π̂ = m2/n1

Apply H-T: N̂ = n2/(m2/n1)

Multinomial model for 2 sampling occasions

• 2 x 2 contingency table for capture events
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Capture time 2
Capture time 1 Yes No Total

Yes m2 n1 −m2 n1

No n2 −m2 ? N − n1

Total n2 N − n2 N

• Corresponding capture history table

Time
1 2 # animals probability
Y Y n11 = m2 p1 p2

Y N n10 = n1 −m2 p1 (1− p2)
N Y n01 = n2 −m2 (1− p1) p2

N N n00 = N − n1 − n2 +m2 (1− p1) (1− p2)

Multinomial distribution: generalization of the binomial to more than 2 outcomes

• Consider an event with 4 possible outcomes:
red, blue, green, yellow with probabilities πr, πb, πg, πy

• Data from N total events, probability of observing nr, nb, ng, ny is:

f(nr, nb, ng, ny | N, πr, πb, πg, πy) =
N !

nr! nb! ng! ny!
πnr
r πng

g πnb
b πny

y

• log likelihood is: lnL(πr, πb, πg, πy | N, nr, nb, ng, ny) =

logN !− log nr!− log nb!− log ng!− log ny! + nr log πr + ng log πg + nb log πb + ny log πy

• Usual set up:

– N is known.

– Only need 3 of the 5 quantities: e.g., nr, nb, ng because ny = N − nr − nb − ng
– And only have to estimate 3 parameters

e.g., πr, πb, πg because πy = 1− (πr + πb + πg)

Multinomial distribution for 2 capture occasions:

• Different setup from the “usual” multinomial:

– N no longer known

– have 3 counts: n11 = m2, n10 = n1 −m2, n01 = n2 −m2

– their probabilities depend on only 2 parameters, π1 and π2
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• The log likelihood function is: lnL(N, π1, π2 | m2, n1, n2)

= logN !− logm2!− log(n1 −m2)!− log(n2 −m2)!− log(N − n1 − n2 +m2)!

+ m2 log [π1 π2] + (n1 −m2) log [π1 (1− π2)] + (n2 −m2) log [(1− π1) π2]

+ (N − n1 − n2 +m2) log [(1− π1) (1− π2)]

• Analytic solutions can be found by solving:

∂lnL

∂π1

=
m2

π1

+
n1 −m2

π1

− n2 −m2

1− π1

− N − n1 − n2 +m2

1− π1

= 0

π̂1 =
n1

N̂
(1)

∂lnL

∂π2

=
m2

π2

+
n2 −m2

π2

− n1 −m2

1− π2

− N − n1 − n2 +m2

1− π2

= 0

π̂2 =
n2

N̂
(2)

∂lnL

∂N
=

∂ logN !

∂N
− ∂ log(N − n1 − n2 +m2)!

∂N
+ log [(1− π1) π2] (3)

• To evaluate equation (3), remember ∂ log Γ(N)
∂N

is the digamma function, Ψ(N):

Ψ(N + 1) =
∂ log Γ(N + 1)

∂N
=
∂ logN !

∂N

• Reference books on mathematical functions, e.g., Abramowitz and Stegun (1964) Hand-
book of Mathematical Functions gives

Ψ(N+1) ≈ log(N+1)− 1

2(N + 1)
− 1

12(N + 1)2
+

1

120(N + 1)4
− 1

252(N + 1)6
+· · · ≈ logN

• Using this approximation in (3) and simplifying gives, after some algebra:

N̂ =
n1 n2

m2
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