Stat 534: formulae referenced in lecture, week 3, updated:
model-based species comp. analysis and Tweedie distributions
mark recapture, part 1

Model-based species composition analysis:
The goal: Does the species composition (all species) change according to a model, e.g.:
two groups (1930’s, 1960°) or more: 1 way ANOVA
factorial treatment structures: 24+ way ANOVA
regression model, e.g., linear with year, or polynomial with year
but no mixed models (at least for now)

Putting the pieces together:

e Fit specified model to each species separately
Using likelihood and a specified distribution

Fit reduced model without the term of interest (null hypothesis)
My understanding is this follows the usual R sequential testing approach
So for a model: species = A + B + C,
R will compare: Test of: Null (H0) model Full model
A intercept only intercept + A
B intercept + A intercept + A + B
C intercept + A + B intercept + A + B+ C

Collect the change in log likelihood for each comparison and each species

Add change in InL across the species
Has known (asymptotic) distribution when all species are independent
They’re almost certainly correlated

Use randomization to get a valid test in spite of correlation
Randomize quantile residuals, one for each species and site
Keep together all residuals from a site (accounts for species correlation)

Does the total number of individuals matter?

Consider two sites, each with 3 species, Abundances: Site ‘ 1 2 3 ‘ Total
A |4 4 32| 40
B |8 8 64| 80

Proportion of total: Site ‘ 1 2 3 ‘ Total
A |01 0.1 08| 1.0
B |01 01 08] 1.0

Two situations

e Higher total because of more effort, known effort
Include log effort, E; as an offset, this models p;;/E;

Yij ~ F(u)
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log pi; = model + log E;
log 1;; — log E;; = model
wi;/E; = exp(model)

e Better “catchability”, total not known
Include a site effect in the model

Yij ~ Flui)
log p;; = o; + model

Estimate «;, will usually be very close to logTotal
But uncertainty in model estimates takes account of unknown total

Distributions for continuous data with non-constant variance
e Normal distribution: usually, constant variance for any mean

— Can write “power of the mean” models

— Y~ N(p, g(p), eg., g(u) = o*u*

— Allow unequal variance, but distribution always symmetric around the mean

— Common experience is that distributions, e.g., of tree basal area, are skewed not
symmetric

e logNormal distribution: log¥; ~ N(u, o)

— Skewed
— Var Y; = ku?
— constant coefficient of variance: cv = v/Var Y /u = Vk

— But: 0 can never occur
Zero-inflated distributions or Hurdle models (both allow zeros, both more com-
plicated)

e Gamma distribution:

— Very similar to a log-normal (also skewed)
— But very slightly fewer very large values (“skinnier upper tail”)

— Also doesn’t allow 0’s

e a Tweedie distribution

Tweedie distribution: more flexible than log normal

e Continuous random variable, Var = kuP, p is a parameter to be specified or estimated



e probability density function not especially informative
e normal, Poisson, and Gamma distributions are special cases of the Tweedie

— p = 0 = normal
— p = 1 = Poisson
— p =2 = Gamma

e Most interesting distributions are those with 1 < p < 2

— Skewed distribution for continuous data with additional point mass at 0

x log normal and Gamma distributions are only for Y > 0

% “additional point mass at 0”: a Tweedie distribution has a non-zero P[Y = 0]
— Tweedie is a compound Poisson-gamma distribution.
— For 1 < p < 2, here’s how to simulate a value, Y, from the Tweedie(A, a, b)

* simulate N ~ Poisson(\)

« simulate N independent values of Y; ~ Gamma(a, b)

* return Y = YN Y]

* If you want values from a Tweedie with a specified u, 02, and p, use:

Mark-recapture analysis

e General population model:
Nizat = Ne+ By — Dy + Iy — E;

— Ny number of individuals in the population at time ¢

— At: time increment, often 1 year, can be other timespans
— By: # births between ¢ and t + At

— Dy: # deaths between t and ¢ + At

— I;: # immigrants between ¢t and ¢t + At

— FEy: # emigrants between t and ¢t + At

e With a single population, commonly assume I; = E; =0
e And often interested in “how many?”: N,
e Derived quantities that are often of interest:

— ¢y fraction of N; who survive the interval, D, = (1 — ¢;) N,
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— per-capita birth rate, B;/N;

Horvitz-Thompson estimator
e Sample survey:

— Survey design = probability that individual ¢ included in the sample = 7,
¢
Total = Z —
Uy

where the sum is over the individuals included in the sample
— Example: simple random sample of n individuals from a population of N

— m =n/N

— Estimated population total = Y- JN =Ny, L =NY

e Applied to estimating population size N;:
— Known probability of capture for each individual, =;
— For now, assume same for all individual, 7x,0wn
— Y; =1 for all individuals caught in the first sample
. 1
N =Y -

T known T known

ning

Lincoln-Petersen estimator N =
ma

e n,: number of individuals released with marks at time 1

e ny: number of individuals caught at time 2

msy: number of individuals caught with marks at time 2

Intuitive estimator:

— Assume 7 is same for 1st and 2nd times
— and same for marked and unmarked individuals

— At time 2:
Caught ny individuals

marked individuals = & = my /n1
Apply H-T: N = ny/(may/n;)

Multinomial model for 2 sampling occasions

e 2 x 2 contingency table for capture events
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Capture time 2

Capture time 1 Yes No Total
Yes Mo ny — Mo nq

No | ng — ma ? N —n,
Total o N —ng N

e Corresponding capture history table

Time

1 2 # animals probability

Y Y N1 = My P1 D2

Y N N = N1 — M2 b1 (1 —p2)

N Y No1 = N2 — M2 (1 —p1) p2

N N np=N-n—ng+my (1—p1)(1—po)

Multinomial distribution: generalization of the binomial to more than 2 outcomes

e Consider an event with 4 possible outcomes:
red, blue, green, yellow with probabilities 7, m, 74, ,

e Data from N total events, probability of observing n,, ny, ng, n, is:

N!
— : n n ny ..n
f(ng, np, ng, ny | N, m, m, Ty, T,) = T T Ty T Ty
nel np! ngl ny!

e log likelihood is: InL(m,, m, 7y, 7, | N, 1y, np, ng, ny) =

log N! —log n,! —logny! —log ny! —log n,! 4+ n, log 7, 4+ nglog 7, + ny log 7, 4 ny log m,

e Usual set up:
— N is known.
— Only need 3 of the 5 quantities: e.g., n,, ny, ny because n, = N —n, —n, — n,

— And only have to estimate 3 parameters
e.g., T, Ty, Ty because m, = 1 — (7, + m, + 7y)

Multinomial distribution for 2 capture occasions:
e Different setup from the “usual” multinomial:

— N no longer known
— have 3 counts: N1 = Mo, Nig = N1 — My, Nop = N2 — My

— their probabilities depend on only 2 parameters, 7 and o



e The log likelihood function is: InL(N, 7y, 7 | ma, ny, ng)

= log N! — logms! — log(n; — ma)! — log(ny — ma)! — log(N — ny — ng + my)!
+ mglog[m m] + (n1 — ma)log [m (1 — m2)] + (ng — mg)log [(1 — m1) o]
+ (N —n3—ng+msg)log[(1—m) (1 —m)]

e Analytic solutions can be found by solving:

olnL My N1 —Mg MNg—My N —ny—ng+my
= — 4+ — — =0
87r1 T T 1—m 1—m
N n1
m = —= 1
L= 2 )
OlnL My MNog—Mg Ni—My N —n1—ng+msy
= — + — — =0
87'('2 T o 1-— o 1—- T2
N no
T = —= 2
, = 2 2)
olnL Odlog N!' Olog(N —ny — ng + my)!
ON ON ON +log [(1 — 1) o] (3)
e To evaluate equation (3), remember 810215(]\[) is the digamma function, W(N):
JlogI'(N +1) 0Olog N!
U(N+1)= =
(V+1) N N

e Reference books on mathematical functions, e.g., Abramowitz and Stegun (1964) Hand-
book of Mathematical Functions gives

1 1 1 1
U(N+1) ~ log(N+1)— - -
(N+1) = log(N+1) dN+1) 12(N+1)2 120(N +1)' 252(N + 1)°

+---x~log N

e Using this approximation in (3) and simplifying gives, after some algebra:

& ni ng
N

ma



